Problem
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
1
2
| F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
|
Given N, calculate F(N).
Example 1
1
2
3
| Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
|
Example 2
1
2
3
| Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
|
My Answer
- 중복 연산으로 인해서
N이 커질수록 연산시간이 오래 걸리기 때문에, 중간 결과값을 m_cache에서 기록 했다가 나중에 쓰자.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
HashMap<Integer, Integer> m_cache = new HashMap<Integer, Integer>();
public int fib(int N) {
if ( N == 0 )
return 0;
if ( N == 1)
return 1;
if ( m_cache.containsKey(N))
return m_cache.get(N);
int result = fib(N-1) + fib(N-2);
m_cache.put(N, result);
return result;
}
}
|